methoxyphenoxy group of (III) - it should be noted that there are contacts shorter than van der Waals radii between the two parts in (I). These contacts, which are not strictly determined either by cyclic structure or by two atoms being bonded to the same atom, are $\mathrm{O}(2) \cdots \mathrm{C}(10) 2.86 \AA, \mathrm{C}(9) \cdots \mathrm{C}(10) 2.93 \AA$ and $\mathrm{O}(5) \cdots \mathrm{C}(7) 3 \cdot 13 \AA$. These short non-bonding contacts must be due to favourable packing of the crystal with this conformation of the molecule, as no favourable intramolecular contacts are seen here such as the contact $\mathrm{O}(5) \cdots \mathrm{C}(7)$ observed for (III) (Destro \& Saccarello, 1983).
To some extent the bonding geometry around $\mathrm{C}(8)$ in (I) must be caused by short non-bonding intramolecular contacts and the crystal-packing forces. For that reason, care has to be taken when trying to predict the behaviour of (I) in solution, but keeping this in mind one would predict that the $\mathrm{O}(2)-\mathrm{C}(8)$ bond, which is somewhat longer than the two other $\mathrm{O}-\mathrm{C}$ bonds around $\mathrm{C}(8)$, should be the most susceptible to hydrolysis according to the hypothesis proposed by Ankersen, Nielsen \& Senning (1989). This assumption is supported by the fact that (I) yields $51 \cdot 1 \%$ aspirin (IV) and $48 \cdot 9 \%$ salicylic acid (V) upon hydrolysis at $\mathrm{pH}=7.4$ and a temperature of 310 K (Ankersen \& Senning, 1989), indicating that the hydrolysis follows either path 1 or 3 of the reaction scheme.
The conformation of the half boat of the aspirin moiety of (I) is closer to ideality (see Table 2) than the equivalent part of (III) (Destro \& Saccarello, 1983), probably because of the more flexible linkage
between the two parts of the molecule causing fewer unfavourable short non-bonding intramolecular contacts.

I would like to thank Dr A. C. Hazell and Dr R. G. Hazell for their advice, help and stimulating interest.

References

Ankersen, M., Nielsen, K. K. \& Senning, A. (1989). Acta Chem. Scand. 43, 213-221.
Ankersen, M. \& Senning, A. (1989). Acta Chem. Scand. 43, 793-798.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). Orffe. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Desiro, R. \& Saccarello, M. L. (1983). Tetrahedron, 39, 31513157.

Hansen, A. B. \& Senning, A. (1983). Acta Chem. Scand. B37, 351-359.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Jørgensen, J. E. \& Hansen, A. B. (1982). Acta Cryst. B38, 991-993.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nelmes, R. J. (1975). Acta Cryst. A31, 273-279.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1990). C46, 2419-2421

Structure of Tetraphenylphosphonium Decahydro-8-hydroxy-9-methyl-6-carba-nido-decaborate(1-) Ethanol Solvate

By V. Šubrtová and V. Petríček
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 18040 Praha 8, Czechoslovakia

(Received 30 November 1989; accepted 7 March 1990)

Abstract

C}_{24} \mathrm{H}_{20} \mathrm{P}^{+} . \mathrm{C}_{2} \mathrm{H}_{14} \mathrm{~B}_{9} \mathrm{O}^{-} . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \quad M_{r}=\) 536.89, triclinic, $P \overline{1}, a=10.253$ (3), $b=10.971$ (2), c $=14.326(5) \AA, \quad \alpha=89.96(2), \quad \beta=81.22(3), \quad \gamma=$ 88.74 (2) $^{\circ}, V=1592.2$ (8) $\AA^{3}, Z=2, D_{m}$ (flotation) $=$ $1 \cdot 122, D_{x}=1.120 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA, \mu$ $=1.06 \mathrm{~cm}^{-1}, F(000)=568, T=293 \mathrm{~K}, R=0.058$ for 3982 observed independent reflections. The novel monocarbadecaborane anions have OH ligands attached to the B 8 atoms. The oxygen of the OH group is involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding

with the ethanol solvent. Two anions and two alcohols form a centrosymmetric 'dimer'. Mean $\mathrm{O} 1 \cdots \mathrm{O} 2=2.763(4) \AA$, mean $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=174(5)^{\circ}$.

Introduction. Crystals of the title compound were prepared in the Institute of Inorganic Chemistry of the Czechoslovak Academy of Sciences by the specific stepwise degradation reaction of a reactive isomer $\left(r\right.$ - $\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{13}\right)$ (Plešek, Jelínek, Štibr \& Heřmánek, 1989). The removal of one B and one C atom from

Table 1. Fractional coordinates and B_{eq} values (Hamilton, 1959) for non-H atoms with e.s.d.'s in parentheses

	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
$\stackrel{P}{ }$	0.51574 (7)	0.25646 (6)	0.76622 (5)	$2 \cdot 97$ (2)
Cl1	0.6157 (3)	0.2519 (3)	0.6520 (2)	3.54 (7)
C 12	0.6218 (4)	0.3522 (3)	0.5923 (2)	4.8 (1)
C13	0.7064 (5)	$0 \cdot 3473$ (5)	0.5076 (3)	$6 \cdot 5$ (1)
C14	0.7786 (4)	$0 \cdot 2445$ (5)	0.4804 (3)	6.7 (1)
C15	0.7738 (4)	0.1443 (4)	0.5391 (3)	6.1 (1)
C16	0.6932 (3)	0.1482 (3)	0.6256 (2)	4.80 (9)
C21	0.6236 (2)	0.2233 (2)	0.8501 (2)	2.87 (6)
C22	0.7397 (3)	0.2883 (3)	0.8453 (2)	4.07 (8)
C23	0.8250 (3)	$0 \cdot 2652$ (3)	0.9089 (2)	$4 \cdot 42$ (9)
C24	0.7971 (3)	0.1763 (3)	0.9759 (2)	3.91 (8)
C25	0.6837 (3)	0.1118 (3)	0.9811 (2)	4.14 (8)
C26	0.5963 (3)	0.1349 (3)	0.9192 (2)	$3 \cdot 58$ (7)
C31	0.4374 (3)	0.4031 (2)	0.7883 (2)	$3 \cdot 22$ (7)
C32	0.4719 (3)	$0 \cdot 4815$ (3)	0.8557 (2)	4.16 (8)
C33	0.4041 (4)	0.5916 (3)	0.8724 (3)	$5 \cdot 2$ (1)
C34	0.3016 (4)	0.6224 (3)	0.8235 (3)	$5 \cdot 5$ (1)
C35	0.2689 (3)	0.5443 (3)	0.7558 (3)	$4 \cdot 9$ (1)
C36	0.3353 (3)	0.4350 (3)	0.7384 (2)	4.06 (8)
C41	0.3849 (3)	$0 \cdot 1486$ (2)	0.7751 (2)	$3 \cdot 23$ (7)
C42	0.2756 (3)	$0 \cdot 1662$ (3)	0.8444 (2)	3.91 (8)
C43	0.1744 (3)	0.0848 (3)	0.8535 (3)	4.8 (1)
C44	0.1809 (4)	-0.0137 (3)	0.7949 (3)	$5 \cdot 3$ (1)
C45	0.2870 (4)	-0.0322 (3)	0.7277 (3)	$5 \cdot 6$ (1)
C46	0.3903 (3)	0.0480 (3)	0.7158 (2)	4.39 (9)
B1	0.1696 (4)	0.1520 (4)	0.1819 (3)	5.0 (1)
B2	0.1092 (4)	0.2735 (4)	0.1209 (3)	$4 \cdot 8$ (1)
B3	0.0591 (3)	0.2659 (3)	0.2426 (3)	3.94 (9)
B4	0.1766 (4)	$0 \cdot 1856$ (3)	0.3037 (3)	4.4 (1)
B5	0.2816 (4)	0.2408 (5)	0.1064 (3)	5.5 (1)
C6	0.2329 (3)	0.3727 (4)	0.1150 (2)	5.1 (1)
B7	0.1189 (4)	0.4041 (3)	0.1936 (3)	4.06 (9)
B8	0.1481 (3)	$0 \cdot 3447$ (3)	0.3182 (2)	3.71 (8)
B9	0.3072 (4)	0.2742 (4)	0.3190 (3)	4.6 (1)
B10	0.3223 (4)	0.1728 (4)	0.2206 (3)	5.0 (1)
O1	0.0864 (3)	$0 \cdot 4071$ (2)	0.3993 (2)	$5 \cdot 20$ (7)
C	0.3924 (5)	0.2749 (5)	0.4011 (4)	6.6 (1)
O2	0.1029 (2)	$0 \cdot 4078$ (2)	0.5898 (2)	$5 \cdot 23$ (7)
C1	0.0385 (5)	0.3061 (4)	0.6396 (3)	$6 \cdot 3$ (1)
C2	0.0962 (7)	$0 \cdot 1888$ (5)	0.6029 (5)	$8 \cdot 1$ (2)

the dicarbadodecaborane cage led to the formation of the new monocarbaborane framework. The primary aim of this work was to study the effects of substituents on this polyhedral cage geometry. Additionally, we wished to determine the position of the ethanol solvent molecule in the unit cell to try to explain why it was not possible to wash the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ from the title compound. The synthesis, chemistry and NMR spectra of this compound will be published elsewhere (Plešek, Jelínek, Štíbr, Heřmánek, Fontaine \& Kennedy, 1990).

Experimental. Transparent colourless acicular crystal $0.1 \times 0.1 \times 0.5 \mathrm{~mm}$ was mounted on a Hilger \& Watts four-circle diffractometer; Mo $K \alpha$ radiation, Nb filter; cell parameters and standard deviations were obtained by least squares from 40 reflections (5 $<\theta<20^{\circ}$) (Shoemaker, 1970); 5606 unique independent reflections by learnt-profile method (Clegg, 1981) measured by $\theta / 2 \theta$ scans to $\sin \theta / \lambda=0.595 \AA^{-1}$ for $h 0 \rightarrow 12, k-12 \rightarrow 13, l-16 \rightarrow 16$. The 3982 reflections with $I>1 \cdot 96 \sigma(I)$ were regarded as observed. Intensities of three standards ($3 \overline{2} 6,600$, 080) were measured every 30 reflections, no signifi-

Table 2. Molecular geometry

(a) Bond distances (\AA) in tetraphenylphosphine			
$\mathrm{P}-\mathrm{Cl} 1$	1.794 (3)	$\mathrm{P}-\mathrm{C} 31$	1.789 (3)
P-C21	1.785 (3)	$\mathrm{P}-\mathrm{C} 41$	1.798 (3)
C11-C12	1.388 (4)	C31-C32	1.385 (4)
C11-C16	1.392 (4)	C31-C36	1.392 (4)
C12-C13	1.380 (5)	C32-C33	1.384 (4)
C13-C14	1.360 (7)	C33-C34	1.384 (6)
C14-C15	1.380 (7)	C34-C35	1.381 (5)
C15-C16	1.381 (5)	C35-C36	1.369 (5)
C21-C22	1.394 (4)	C41-C42	1.390 (4)
C21-C26	1.386 (4)	C41-C46	1.389 (4)
C22-C23	1.375 (5)	C42-C43	1.374 (5)
C23-C24	1.371 (4)	C43-C44	1.365 (5)
C24-C25	1.366 (4)	C44-C45	1.351 (5)
C25-C26	1.373 (5)	C45-C46	$1 \cdot 382$ (5)
(b) Bond distances (\AA) in carbaborane cage and ethanol			
B1-B2	1.745 (6)	B4-B8	1.772 (5)
B1-B3	1.800 (5)	B4-B9	1.713 (5)
B1-B4	1.796 (6)	B4-B10	1.765 (5)
B1-B5	1.761 (6)	B5-C6	1.520 (6)
B1-B10	1.758 (6)	B5-B10	1.895 (6)
B2-B3	1.742 (5)	C6-B7	1.528 (5)
B2-B5	1.777 (5)	B7-B8	1.962 (5)
B2-C6	1.681 (5)	B8-B9	1.791 (5)
B2-B7	1.786 (6)	B8-O1	1.406 (4)
B3-B4	$1.807(5)$	B9-B10	1.785 (6)
B3-B7	1.752 (5)	B9-C	1.569 (7)
B3-B8	1.760 (5)	$\mathrm{O}_{2}-\mathrm{Cl}$	1.440 (5)
		$\mathrm{Cl}-\mathrm{C} 2$	1.469 (7)
(c) Torsion angles (${ }^{\circ}$)			
$\mathrm{B8}-\mathrm{Ol}-\mathrm{H}(\mathrm{Ol})-\mathrm{O} 2$	179 (2)	$\mathrm{Cl}-\mathrm{O} 2-\mathrm{H}(\mathrm{O} 2)-\mathrm{O} 1$	102 (6)
(d) Hydrogen interactions (\AA and ${ }^{\circ}$)			
$X-\mathrm{H} \cdots Y$	$X \cdots Y$	$X-\mathrm{H} \quad \mathrm{H} \cdots Y$	$X-\mathrm{H} \cdots Y$
$\mathrm{O} 1-\mathrm{H}(\mathrm{O} 1) \cdots{ }^{\text {2 }}$	2.766 (4)	0.79 (5) 1.98 (5)	173 (5)
$\mathrm{O} 2-\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{Ol}$	2.760 (4)	0.93 (6) 1.83 (6)	175 (5)
Symmetry code: (i) $-x, y-1, z-1$.			

cant variation; data corrected for Lorentz and polarization effects, but not for absorption and extinction.

The structure was solved by direct methods using MULTAN80 (Main et al., 1980) and subsequent standard Fourier techniques. Full-matrix weighted least-squares refinement on F of all reflections with local version of ORFLS (Petríček \& Malý, 1981). Anisotropic temperature factors for 40 non- H atoms. All 40 H atoms were found from the difference Fourier synthesis and their x, y, z and individual isotropic temperature factors were refined. Function minimized $\quad \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \quad$ with $\quad w^{-1}=\sigma^{2}\left(F_{o}\right)+$ ($\left.0.03 F_{o}\right)^{2}$; in final cycle $R=0.058, w R=0.073, S=$ 1.37 (for observed reflections), average $\Delta / \sigma=0.01$, $(\Delta / \sigma)_{\max }=0.05$; max. and min. peak heights in final difference Fourier synthesis +0.33 and $-0.30 \mathrm{e}_{\AA^{-3}}$. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). Calculations performed on a Siemens 7536 computer. Figures were prepared using the program PLUTO (Motherwell \& Clegg, 1978).

Discussion. Final atom coordinates are given in Table 1; bond lengths for non-H atoms, some torsion angles and hydrogen interactions are summarized in

Table 2.* The structure consists of a tetraphenylphosphine cation and a monocarbaborane cage anion where methyl and OH groups replace two terminal H atoms of B8 and B9 in the polyhedral cage. The structure also contains one molecule of ethanol solvent. A view of two anions and two ethanols connected with hydrogen bonds about a centre of symmetry is shown in Fig. 1 together with the numbering scheme.

The nine B atoms and one C atom form a carba-nido-decaborane cage with mean $\mathrm{B}-\mathrm{B}=1.787$ (5) \AA. The C atom is placed in the 6 position and has mean $\mathrm{C} 6-\mathrm{B}=1.576$ (5) \AA. The CH_{3} group is attached on the other side of the cage to B 9 with $\mathrm{B}-\mathrm{C}=$ 1.569 (7) \AA. The OH ligand, bonded to $\mathrm{B} 8[\mathrm{~B}-\mathrm{O}=$ 1.406 (4) \AA], forms a centrosymmetric hydrogen-

Fig. 1. Hydrogen bonds (dashed lines) between two anions and two ethanols with the atom-numbering scheme.

Fig. 2. Contents of the unit cell (H atoms omitted).
bonded dimer (Fig. 1, Table 2d) via the solvent ethanol. The $\mathrm{O} \cdots \mathrm{O}$ distances are clearly within normal ranges for this interaction (Brown, 1976). This explains why the structural stability of the ethanol solvent is stronger here than in some other examples (Mackay, Sadek \& Culvenor, 1984; Ehrlich, Fronczek, Watkins, Newkome \& Hager, 1984; Foces-Foces, Cano \& Garcia-Blanco, 1983) and why the temperature factors of the non- H atoms in ethanol are reasonably low. The rigid hydrogen-bond framework probably also explains the impossibility of washing the ethanol solvate from this substance (Plešek, Jelinek, Štibr, Heřmánek, Fontaine \& Kennedy, 1990).

Average distances of B atoms to their terminal H atoms in the carbaborane cage are $\mathrm{B}-\mathrm{H}=1 \cdot 12$ (4), and $\mathrm{C}-\mathrm{H}=1.02(3) \AA$. The H_{b} atoms in the open part of the carbaborane cage form two bridges: B8-$\mathrm{H}_{b}(8,9)-\mathrm{B} 9=87.6(16) \quad$ and $\quad \mathrm{B} 9-\mathrm{H}_{b}(9,10)-$ $\mathrm{B}(10)=89 \cdot 3(18)^{\circ}, \quad \mathrm{B} 8-\mathrm{H}_{b}(8,9)=1 \cdot 31(3), \quad$ B9— $\mathrm{H}_{b}(8,9)=1 \cdot 27(3), \quad \mathrm{B} 9-\mathrm{H}_{b}(9,10)=1 \cdot 36(3) \quad$ and B10- $\mathrm{H}_{b}(9,10)=1 \cdot 18$ (3) \AA.

The distances and angles in the PPh_{4} cation [mean $\mathrm{P}-\mathrm{C}=1.792(3)$, mean $\mathrm{C}-\mathrm{C}=1.379$ (4) \AA, $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles in the range $106 \cdot 5-111 \cdot 6^{\circ}$] are normal by comparison with other structures (Bates \& Waters, 1985). The packing of the molecules in the unit cell is illustrated in Fig. 2.

We thank Dr J. Plešek from Institute of Inorganic Chemistry for supplying the crystals and for valuable suggestions concerning chemical properties.

References

Bates, P. A. \& Waters, J. M. (1985). Acta Cryst. C41, 862-865.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Ehrlich, M. G., Fronczek, F. R., Watkins, S. F., Newkome, G. R. \& Hager, D. C. (1984). Acta Cryst. C40, 78-80.

Foces-Foces, C., Cano, F. H. \& Garcia-Blanco, S. (1983). Acta Cryst. C39, 977-980.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Mackay, M. F., Sadek, M. \& Culvenor, C. C. J. (1984). Acta Cryst. C40, 1073-1077.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Petrííćek, V. \& Malý, K. (1981). System of computer programs for the solution of crystal structures from X-ray diffraction data. Unpublished.
Plesék, J., Jelínek, J., Štíbr, B. \& Heर̆mánek, S. (1989). J. Chem. Soc. Chem. Commun. pp. 348-349.
Plešek, J., Jelínek, J., Śtíbr, B., Heर̌mánek, S., Fontaine, X. L. R. \& Kennedy, J. D. (1990). J. Chem. Soc. Chem. Commun. In the press.
Shoemaker, D. P. (1970). J. Appl. Cryst. 3, 179-180.

